MAKALAH KIMIA
TERMOKIMIA
Disusun oleh :
Nurfadhilah Muharani Ms
XI MIA 4
Dra. Nurnas, M.Pd
MADRASAH ALIYAH NEGERI 2 KOTA JAMBI
JLN. ADITYAWARMAN SUKAREJO THE HOK, JAMBI SELATAN
TAHUN AJARAN 2019/2020
BAB I
PENDAHULUAN
1.1 Latar Belakang
Termokimia adalah ilmu yang mempelajari hubungan antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan sebagai energi yang dikandung setiap unsur atau senyawa. Energi kimia yang terkandung dalam suatu zat adalah semacam energi potensial zat tersebut. Energi potensial kimia yang terkandung dalam suatu zat disebut panas dalam atau entalpi dan dinyatakan dengan simbol H. Selisih antara entalpi reaktan dan entalpi hasil pada suatu reaksi disebut perubahan entalpi reaksi. Perubahan entalpi reaksi diberi simbol H.
Bagian dari ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. Secara operasional termokimia berkaitan dengan pengukuran dan pernafsiran perubahan kalor yang menyertai reaksi kimia, perubahan keadaan, dan pembentukan larutan.Termokimia merupakan pengetahuan dasar yang perlu diberikan atau yang dapat diperoleh dari reaksi-reaksi kimia, tetapi juga perlu sebagai pengetahuan dasar untuk pengkajian teori ikatan kimia dan struktur kimia. Fokus bahasan dalam termokimia adalah tentang jumlah kalor yang dapat dihasilkan oleh sejumlah tertentu pereaksi serta cara pengukuran kalor reaksi.
Termokimia merupakan penerapan hukum pertama termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang menyertai reaksi kimia.Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika atau perubahan reaksi kimia dengan mengamati panas/termalnya saja. Salah satu terapan ilmu ini dalam kehidupan sehari-hari ialah reaksi kimia dalam tubuh kita dimana produksi dari energi-energi yang dibutuhkan atau dikeluarkan untuk semua tugas yang kita lakukan. Pembakaran dari bahan bakar seperti minyak dan batu bara dipakai untuk pembangkit listrik. Bensin yang dibakar dalam mesin mobil akan menghasilkan kekuatan yang menyebabkan mobil berjalan. Bila kita mempunyai kompor gas berarti kita membakar gas metan (komponen utama dari gas alam) yang menghasilkan panas untuk memasak. Dan melalui urutan reaksi yang disebut metabolisme, makanan yang dimakan akan menghasilkan energi yang kita perlukan untuk tubuh agar berfungsi. Hampir semua reaksi kimia selalu ada energi yang diambil atau dikeluarkan.
1.2 Rumusan Masalah
- Apa itu termokimia ?
- Apa itu entalphi?
- Apa itu calorimeter ?
- Apa manfaat dari termokimia ?
1.3 Tujuan
- Untuk lebih mengetahui termokimia
- Untuk lebih mengetahui entalphi
- Untuk lebih mengetahui calorimeter
- Untuk lebih mengetahui manfaat termokimia
BAB II
PEMBAHASAN
2.1 Pengertian Termokimia
Termokimia adalah ilmu tentang perubahan kalor (panas) suatu zat yang melibatkan proses kimia dan fisika. Termokimia yang merupakan bagian dari Termodinamika membahas tentang perubahan energi yang menyertai suatu reaksi kimia yang dimanifestasikan sebagai kalor reaksi. Partikel-partikel penyusun zat selalu bergerak konstan, sehingga zat memiliki energi kinetik. Energi kinetik rata-rata suatu objek berbanding lurus dengan temperature absolutnya (0K).
Ini berarti jika suatu objek dalam keadaan panas, atom-atom molekulnya-molekul penyusun objek tersebut bergerak cepat, sehingga energy kinetic objek tersebut besar. Energi potensial suatu zat muncul dari gaya tarik menarik dan tolak-menolak antara partikel-partikel penyusun zat. Salah satu bentuk energi yang umum dijumpai adalah energi kalor.
Kalor adalah salah satu bentuk energi yang dapat dipertukarkan antara sistem dan lingkungan. Kalor reaksi adalah perubahan energi dalam reaksi kimia dalam bentuk kalor. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.
Alat untuk mengukur kalor reaksi dari suatu reaksi kimia adalah kalorimeter. Kalorimeter yang menggunakan teknik pencampuran dua zat didalam suatu wadah, umumnya digunakan untuk menentukan kalor jenis suatu zat. Ada dua jenis kalorimeter yaitu kalorimeter volume tetap dan kalorimeter tekanan tetap.
Termokimia merupakan penerapan hukum pertama termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang menyertai reaksi kimia. Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika atau perubahan reaksi kimia dengan mengamati panas/termalnya saja. Salah satu terapan ilmu ini dalam kehidupan sehari-hari ialah reaksi kimia dalam tubuh kita dimana produksi dari energi-energi yang dibutuhkan atau dikeluarkan untuk semua tugas yang kita lakukan. Pembakaran dari bahan bakar seperti minyak dan batu bara dipakai untuk pembangkit listrik.
Bensin yang dibakar dalam mesin mobil akan menghasilkan kekuatan yang menyebabkan mobil berjalan. Bila kita mempunyai kompor gas berarti kita membakar gas metan (komponen utama dari gas alam) yang menghasilkan panas untuk memasak. Dan melalui urutan reaksi yang disebut metabolisme, makanan yang dimakan akan menghasilkan energi yang kita perlukan untuk tubuh agar berfungsi. Hampir semua reaksi kimia selalu ada energi yang diambil atau dikeluarkan.
Dengan kajian-kajian yang dilakukan mengenai pengaplikasian termokimia dalam kehidupan sehari-hari. Dan untuk menguraikan permasalahan tersebut lebih detail lagi, penulis mencoba membuat makalah yang isinya membahas tentang “Aplikasi Termokimia Dalam Kehidupan Sehari-hari”.
2.2 Persamaan Termokimia
Adalah persamaan reaksi yang mengikutsertakan perubahan entalpinya ( DH ). Nilai DH yang dituliskan di persamaan termokimia, disesuaikan dengan stoikiometri reaksinya, artinya = jumlah mol zat yang terlibat dalam reaksi kimia = koefisien reaksinya; ( fase reaktan maupun produk reaksinya harus dituliskan).
Contoh Soal :
Pada pembentukan 1 mol air dari gas hidrogen dengan oksigen pada 298 K, 1 atm dilepaskan kalor sebesar 285, 5 kJ.
Persamaan termokimianya :
Jika koefisien dikalikan 2, maka harga DH reaksi juga harus dikalikan 2.
Beberapa hal yang harus diperhatikan dalam menuliskan persamaan termokimia :
- Koefisien reaksi menunjukkan jumlah mol zat yang terlibat dalam reaksi.
- Ketika persamaan reaksinya dibalik ( mengubah letak reaktan dengan produknya ) maka nilai DH tetap sama tetapi tandanya berlawanan.
- Jika kita menggandakan kedua sisi persamaan termokimia dengan faktor y maka nilai DH juga harus dikalikan dengan faktor y tersebut.
- Ketika menuliskan persamaan reaksi termokimia, fase reaktan dan produknya harus dituliskan.
2.3 Perubahan Energi Dalam Reaksi Kimia
Hampir dalam setiap reaksi kimia akan selalu terjadi penyerapan dan pelepasan energi. Apabila perubahan kimia terjadi pada wadah sekat, sehingga tidak ada kalor yang masuk maupun keluar dari sistem. Dengan demikian energy total yang dimiliki sistem adalah tetap. Perubahan energi dalam reaksi kimia ada dua yaitu perubahan endoterm dan perubahan eksoterm. Perubahan endorterm adalah perubahan yang mampu mengalirkan kalor dari sistem ke lingkungan atau melepaskan kalor ke lingkungan.
Bila perubahan eksoterm terjadi temperatur sistem meningkat, energi potensial zat-zat yang terlibat dalam reaksi menurun. Sedangkan perubahan eksoterm adalah kalor yang akan mengalir ke dalam sistem. Bila suatu perubahan endoterm terjadi, temperatur sistem menurun, energi potensial zat-zat yang terlibat dalam reaksi akan meningkat.
2.4 Entalpi
Entalpi (H) adalah jumlah total dari semua bentuk energi. Entalpi (H) suatu zat ditentukan oleh jumlah energi dan semua bentuk energi yang dimiliki zat yang jumlahnya tidak dapat diukur dan akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. Energi kinetik ditimbulkan karena atom – atom dan molekul molekul dalam zat bergerak secara acak. Jumlah total dari semua bentuk energi itu disebut entalpi (H) . Entalpi akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. Misalnya entalpi untuk air dapat ditulis H H20 (l) dan untuk es ditulis H H20 (s).
Untuk menyatakan kalor reaksi pada tekanan tetap (qp ) digunakan besaran yang disebut Entalpi ( H ).
H = E + ( P.V )
DH = DE + ( P. DV )
DH = (q + w ) + ( P. DV )
DH = qp – ( P. DV ) + ( P. DV )
DH = qp
Untuk reaksi kimia :
DH = Hp – Hr
Hp = entalpi produk
Hr = entalpi reaktan
Reaksi pada tekanan tetap : qp = DH ( perubahan entalpi )
Reaksi pada volume tetap : qv = DE ( perubahan energi dalam )
Perubahan kalor atau entalpi yang terjadi selama proses penerimaan atau pelepasan kalor dinyatakan dengan ” perubahan entalpi (ΔH) ” . Harga entalpi zat sebenarnya tidak dapat ditentukan atau diukur. Tetapi ΔH dapat ditentukan dengan cara mengukur jumlah kalor yang diserap sistem. Misalnya pada perubahan es menjadi air, yaitu 89 kalori/gram.
Pada perubahan es menjadi air, ΔH adalah positif, karena entalpi hasil perubahan, entalpi air lebih besar dari pada entalpi es. Pada perubahan kimia selalu terjadi perubahan entalpi. Besarnya perubahan entalpi adalah sama besar dengan selisih antara entalpi hasil reaksi dan jumlah entalpi pereaksi.
Setiap sistem atau zat mempunyai energi yang tersimpan didalamnya. Energi potensial berkaitan dengan wujud zat, volume, dan tekanan. Energi kinetik ditimbulkan karena atom – atom dan molekul¬-molekul dalam zat bergerak secara acak. Jumlah total dari semua bentuk energi itu disebut entalpi (H) . Entalpi akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. . Misalnya entalpi untuk air dapat ditulis H H20 (l) dan untuk es ditulis H H20 (s).
Entalpi (H) suatu zat ditentukan oleh jumlah energi dan semua bentuk energi yang dimiliki zat yang jumlahnya tidak dapat diukur. Perubahan kalor atau entalpi yang terjadi selama proses penerimaan atau pelepasan kalor dinyatakan dengan ” perubahan entalpi (ΔH) ” . Misalnya pada perubahan es menjadi air, maka dapat ditulis sebagai berikut:
Δ H = H H20 (l) -H H20 (s)
Apabila kita amati reaksi pembakaran bensin di dalam mesin motor. Sebagian energi kimia yang dikandung bensin, ketika bensin terbakar, diubah menjadi energi panas dan energi mekanik untuk menggerakkan motor. Demikian juga pada mekanisme kerja sel aki. Pada saat sel aki bekerja, energi kimia diubah menjadi energi listrik, energi panas yang dipakai untuk membakar bensin dan reaksi pembakaran bensin menghasilkan gas, menggerakkan piston sehingga menggerakkan roda motor.
Harga entalpi zat sebenarnya tidak dapat ditentukan atau diukur. Tetapi ΔH dapat ditentukan dengan cara mengukur jumlah kalor yang diserap sistem. Misalnya pada perubahan es menjadi air, yaitu 89 kalori/gram. Pada perubahan es menjadi air, ΔH adalah positif, karena entalpi hasil perubahan, entalpi air lebih besar dari pada entalpi es.
Termokimia merupakan bagian dari ilmu kimia yang mempelajari perubahan entalpi yang menyertai suatu reaksi. Pada perubahan kimia selalu terjadi perubahan entalpi. Besarnya perubahan entalpi adalah sama besar dengan selisih antara entalpi hasil reaksi dam jumlah entalpi pereaksi.
Pada reaksi endoterm, entalpi sesudah reaksi menjadi lebih besar, sehingga ΔH positif. Sedangkan pada reaksi eksoterm, entalpi sesudah reaksi menjadi lebih kecil, sehingga ΔH negatif. Perubahan entalpi pada suatu reaksi disebut kalor reaksi. Kalor reaksi untuk reaksi-reaksi yang khas disebut dengan nama yang khas pula, misalnya kalor pembentukan,kalor penguraian, kalor pembakaran, kalor pelarutan dan sebagainya.
- Entalpi Pembentukan Standar (ΔH◦f)
Entalpi pembentukan standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses pembentukan 1 mol senyawa dari unsur-unsurnya yang stabil pada keadaan standar (STP). Entalpi pembentukan standar diberi simbol (ΔH◦f), simbol f berasal dari kata formation yang berarti pembentukan. Contoh unsur-unsur yang stabil pada keadaan standar, yaitu : H2,O2,C,N2,Ag,Cl2,Br2,S,Na,Ca, dan Hg.
2. Entalpi Penguraian Standar (ΔH◦d)
Entalpi penguraian standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses penguraian 1 mol senyawa dari unsure-unsurnya yang stabil pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔH◦d) simbol d berasal dari kata decomposition yang berarti penguraian.
Menurut Hukum Laplace, jumlah kalor yang dibebaskan pada pembentukan senyawa dari unsur-unsurnya sama dengan jumlah kalor yang diperlukan pada penguraian senyawa tersebut menjadi unsur-unsurnya. Jadi, entalpi penguraian merupakan kebalikan dari entalpi pembentukan senyawa yang sama. Dengan demikian jumlah kalornya sama tetapi tandanya berlawanan karena reaksinya berlawanan arah.
3.Entalpi Pembakaran Standar (ΔH◦c)
Entalpi pembakaran standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses pembakaran 1 mol senyawa dari unsur-unsurnya yang stabil pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔH◦c) simbol d berasal dari kata combustion yang berarti pembakaran.Pembakaran selalu membebaskan kalor sehingga nilai entalpipembakaran selallu negatif (eksoterm)
4. Entalpi Pelarutan Standar (ΔH◦s)
Entalpi pelarutan standar menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk melarutkan 1 mol zat pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔH◦s) simbol s berasal dari kata solvation yang berarti pelarutan.
5.Entalpi Netralisasi Standar
Adalah entalpi yang terjadi pada penetralan 1 mol asam oleh basa atau 1 mol basa oleh asam pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHn. Satuannya = kJ / mol
6.Entalpi Penguapan Standar
Adalah entalpi yang terjadi pada penguapan 1 mol zat dalam fase cair menjadi fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHvap. Satuannya = kJ / mol.
7. Entalpi Peleburan Standar
Adalah entalpi yang terjadi pada pencairan / peleburan 1 mol zat dalam fase padat menjadi zat dalam fase cair pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHfus. Satuannya = kJ / mol.
8. Entalpi Sublimasi Standar
Adalah entalpi yang terjadi pada sublimasi 1 mol zat dalam fase padat menjadi zat dalam fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHsub. Satuannya = kJ / mol.
2.5 Jenis Perubahan Entalpi
1. Perubahan Entalpi Pembentukan (ΔHf)
Merupakan suatu perubahan entalpi pembentukan 1 mol senyawa dari unsur-unsur penyusunnya pada keadaan standar. Nilai entalpi pembentukan standar ditentukan memakai tabel data entalpi pembentukan standar.
Nilai entalpi pembentukan standar:
- Bernilai positif, bila menerima energi
- Bernilai negatif, bila melepas energi
- Bernilai nol, bila unsur tersebut sudah terdapat di alam secara alami
- Bentuk unsur yang sudah di alam terbagi atas monoatomik dan poliatomik. Poliatomik berarti unsur pembentuknya lebih dari 1 unsur.
Contoh monoatomik : C(s), Fe(s), H+(aq), Ba(s), Ca(s), Mg(s), Na(s), Al(s), B(s), Zn(s), P(s).
Monoatomik termasuk golonga gas mulia dan logam lainnya.
Contoh poliatomik : O2(g), Cl2(g), P4(s), H2(g), Br2(l), N2(g), I2(g), F2(g).
Poliatomiktermasuk halogaen dan gas selain gas mulia.
Semua unsur-unsur yang sudah terdapat dialam ini nilai entalpi pembentukannya nol.
detail lihat di file
2.Perubahan entalpi penguraian (ΔHd)
yaitu ΔH untuk menguraikan 1 mol suatu senyawa menjadi unsur-unsur penyusunnya pada keadaan standar. Nilai entalpi penguraian standar berlawanan dengan nilai entalpi pembentukan standar. Pada reaksi penguraian reaktan berpindah ke kanan dan produk berpindah ke kiri.
detail lihat difile
3.Perubahan entalpi pembakaran (ΔHc)
yaitu ΔH dalam pembakaran sempurna 1 mol suatu senyawa pada keadaan standar.
Nilai entalpi pembakaran standar ditentukan menggunakan tabel data entalpi pembakaran standar
Ciri utama dari reaksi pembakaran yaitu sebagai berikut :
- Merupakan reaksi eksoterm
- Melibatkan oksigen dalam reaksinya
- Karbon terbakan menjadi CO2, hidrogen terbakar menjadi H2O, dan belerang terbakar menjadi SO2.
detail lihat difile
4.Perubahan entalpi netralisasi (ΔHn)
Termasuk reaksi eksoterm. yaitu suatu kalor yang dilepas pada pembentukan 1 mol air dan reaksi asam-basa pada suhu 25 derjat celsius dan tekanan 1 atmosfer.
detail lihat difile
2.6 Penentuan Entalpi Reaksi
Penentuan ini dilakukan dengan:
- Menggunakan kalorimetri
- Menggunakan hukum Hess atau hukum penjumlahan
- Menggunakan data tabel entalpi pembentukan
- Menggunakan data energi ikatan
selengkapnya lihat difile
2.7 Kalorimeter
Kalorimetri yaitu cara penentuan kalor reaksi dengan menggunakan kalorimeter.Perubahan entalpi adalah perubahan kalor yang diukur pada tekanan konstan, untuk menentukan perubahan entalpi dilakukan dengan cara yang sama dengan penentuan perubahan kalor yang dilakukan pada tekanan konstan. Perubahan kalor pada suatu reaksi dapat diukur melalui pengukuran perubahan suhu yang terjadi pada reaksi tersebut. Pengukuran perubahan kalor dapat dilakukan dengan alat yang disebut kalorimeter.
Kalorimeter adalah suatu sistem terisolasi ( tidak ada perpindahan materi maupun energi dengan lingkungan di luar kalorimeter ). Kalorimeter terbagi menjadi dua, yaitu kalorimeter bom dan kalorimeter sederhana. Jika dua buah zat atau lebih dicampur menjadi satu maka zat yang suhunya tinggi akan melepaskan kalor sedangkan zat yang suhunya rendah akan menerima kalor, sampai tercapai kesetimbangan termal.
Menurut azas Black : Kalor yang dilepas = kalor yang diterima
Rumus yang digunakan adalah : q = m x c x DT
q = jumlah kalor ( J )
m = massa zat ( g )
ΔT = perubahan suhu ( oC atau K )
c = kalor jenis ( J / g.oC ) atau ( J / g. K )
C = kapasitas kalor ( J / oC ) atau ( J / K )
Oleh karena tidak ada kalor yang terbuang ke lingkungan, maka kalor reaksi = kalor yang diserap / dibebaskan oleh larutan dan kalorimeter, tetapi tandanya berbeda.
2.8 Kapasitas Kalor dan Kalor Jenis
selengkapnya lihat difile
2.9 Beberapa jenis kalorimeter
selengkapnya lihat difile
2.10 Pengaruh Kalor
selengkapnya lihat difile
2.11 Manfaat Kalor dalam Kehidupan Sehari-hari
Dalam kehidupan sehari-hari banyak kamu jumpai peralatan rumah tangga yang prinsip kerjanya menggunakan konsep perpindahan kalor, misal: panci tekan (pressure cooker), setrika, alat penyulingan, dan alat pendingin. Berikut beberapa contoh penerapan perpindahan kalor secara radiasi dalam kehidupan sehari-hari.
- Pada siang hari yang panas, orang lebih suka memakai baju cerah dari pada baju gelap. Hal ini bertujuan untuk mengurangi penyerapan kalor.
- Cat mobil atau motor dibuat mengkilap untuk mengurangi penyerapan kalor.
- Mengenakan jaket tebal atau meringkuk di bawah selimut tebal saat udara dingin badanmu merasa nyaman. Udara termasuk isolator yang baik. Beberapa bahan penyekat terdiri dari banyak kantong-kantong udara kecil terbungkus. Kantong tersebut berfungsi mencegah perpindahan kalor secara konveksi. Jadi tahukah kamu mengapa dalam selimut diisi dengan bulu-bulu kecil atau serat yang menjebak udara? Hal ini dilakukan untuk mencegah kemungkinan kehilangan kalor.
- Termos : Dinding termos dilapisi perak. Hal ini bertujuan untuk mencegah hilangnya kalor secara radiasi. Ruang hampa antara dinding kaca pada termos bertujuan untuk mencegah perpindahan kalor secara konveksi
2.12 Manfaat Termokimia
- Dapat mempelajari suatu bentuk energi yang dibutuhkan oleh manusia untuk bergerak dalam bentuk energi kinetik dan tambahan-tambahan dalam melakukan proses fotosintesis yang membutuhkan energi dari sinar matahari.
- Dapat mempelajari suatu sistem atau bagian alam semasta yang menjadi objek penelitian serta lingkungan atau bagian alam semesta yang berinteraksi dengan satu sistem.
2.13 Aplikasi Termokimia Dalam Kehidupan Sehari-Hari
selengkapnya lihat difile
2.14 Sistem dan Lingkungan Termokimia
Segala sesuatu yang menjadi pusat perhatian dalam mempelajari suatu perubahan energi dan berubah selama proses itu berlangsung disebut dengan sistem. Sedangkan hal-hal yang tidak berubah selama proses berlangsung dan yang membatasi sistem dan juga bisa mempengaruhi sistem disebut dengan lingkungan.
Berdasarkan interaksinya dengan lingkungan, sistem dibagi menjadi tiga macam, yakni sebagai berikut :
1. Sistem Terbuka
Sistem terbuka yaitu suatu sistem yang memungkinkan terjadi suatu perpindahan energi dan zat (materi) antara lingkungan dengan sistem. Pertukaran materi artinya ada suatu reaksi yang bisa meninggalkan wadah reaksi, misalnya gas.
2. Sistem tertutup
Suatu sistem yang mana antara sistem dan lingkungan bisa terjadi suatu perpindahan energi, tapi tidak terjadi pertukaran materi.
3. Sistem terisolasi
Sistem teriolasi yaitu Suatu sistem yang memungkinkan terjadinya perpindahan energi dan materi antara sistem dengan lingkungan.
2.15 Reaksi Termokimia
selengkapnya lihat difile
2.16 Energi Ikatan
selengkapnya lihat difile
2.17 Hukum Terkait Termokimia
selengkapnya lihat difile
2.18 Penentuan ΔH Reaksi
selengkapnya lihat difile
2.19 CONTOH SOAL
selengkapnya lihat difile
BAB III
PENUTUP
3.1 Kesimpulan
Singkatnya, materi pembelajaran pada termokimia ini merupakan materi dasar yang wajib untuk dipelajari dan dipahami secara mendalam. Materi yang secara umum mencakup termodinamika I, kalor reaksi, kerja, entalpi, kalorimeter, hukum Hess, penentuan DH reaksi, energi ikatan, dan jenis-jenis kalor merupakan materi-materi dasar dalam pelajaran kimia yang berguna untuk mempelajari materi selanjutnya yang tentu saja lebih rumit. Dalam makalah ini materi duraikan secara singkat agar para pembaca lebih mudah memahaminya.
Berdasarkan pembahasan yang tinjauan pustaka yang kami susun dalam makalah ini, maka kami dapat menyimpulkan sebagai berikut :
- Setiap sistem atau zat mempunyai energi yang tersimpan didalamnya. Energi potensial berkaitan dengan wujud zat, volume, dan tekanan.
- Berdasarkan perubahan entalpinya, reaksi kimia dibedakan menjadi dua yaitu,
- Reaksi Eksoterm dan,
- Reaksi Endoterm
- Sistem merupakan Pusat fokus perhatian yang diamati dalam suatu percobaan.Lingkungan merupakan hal-hal diluar sistem yang membatasi sistem dan dapat mempengaruhi sistem. Berdasarkan interaksinya dengan lingkungan, Sistem dibedakan menjadi 3 macam:
- Sistem Terbuka
- Sistem Tertutup
- Sistem terisolasi
- Dalam persamaan termokimia, nilai DH yang dituliskan di persamaan termokimia, disesuaikan dengan stoikiometri reaksinya, artinya = jumlah mol zat yang terlibat dalam reaksi kimia = koefisien reaksinya; ( fase reaktan maupun produk reaksinya harus dituliskan).
Ada beberapa jenis dalam menentukan Harga Perubahan Entalpi ∆H , yaitu :
- Penentuan ∆H Reaksi Berdasarkan Data Perubahan Entalpi
- Penentuan ∆H Reaksi dengan Hukum Hess
- Penentuan kalor reaksi secara kalorimetris
3.2 Saran
Dengan adanya makalah sederhana ini, penyusun mengharapkan agar para pembaca dapat memahami materi termokimia ini dengan mudah. Saran dari penyusun agar para pembaca dapat menguasai materi singkat dalam makalah ini dengan baik, kemudian dilanjutkan dengan pelatihan soal sesuai materi yang berhubungan agar semakin menguasai materi.
DAFTAR PUSTAKA
Termokimia.( 19 Agustus 2019 ).Diperoleh dari https://www.gurupendidikan.co.id/termokimia/
Termokimia.( 19 Agustus 2019 ). Diperoleh dari http://www.panduankimia.net/2017/07/soal-termokimia-no-11-20.html
Termokimia.( 19 Agustus 2019 ). Diperoleh dari http://www.panduankimia.net/2017/05/contoh-soal-termokimia-50-contoh-soal.html
Termokimia.( 19 Agustus 2019 ). Diperoleh darihttps://dokumen.tips/documents/makalah-termokimia-56aa42dc44d23.html
Termokimia.( 25 Agustus 2019 ). Diperoleh darihttps://kakajaz.blogspot.com/2016/03/pembahasan-kimia-un-termokimia.html
Termokimia.( 25 Agustus 2019 ). Diperoleh dari https://www.terpintar.web.id/pengertian-kalor-kalor-jenis-kapasitas-kalor-dan-kalorimeter/
Silahkan DOWNLOAD filenya.
Tidak ada komentar: